Gadolinium

Gadolinium, 64Gd
Gadolinium
Pronunciation/ˌɡædəˈlɪniəm/ (GAD-ə-LIN-ee-əm)
Appearancesilvery white
Standard atomic weight Ar°(Gd)
Gadolinium in the periodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson


Gd

Cm
europiumgadoliniumterbium
Atomic number (Z)64
Groupf-block groups (no number)
Periodperiod 6
Block  f-block
Electron configuration[Xe] 4f7 5d1 6s2
Electrons per shell2, 8, 18, 25, 9, 2
Physical properties
Phase at STPsolid
Melting point1585 K ​(1312 °C, ​2394 °F)
Boiling point3546 K ​(3273 °C, ​5923 °F)
Density (at 20° C)7.899 g/cm3[3]
when liquid (at m.p.)7.4 g/cm3
Heat of fusion10.05 kJ/mol
Heat of vaporization301.3 kJ/mol
Molar heat capacity37.03 J/(mol·K)
Vapor pressure (calculated)
P (Pa) 1 10 100 1 k 10 k 100 k
at T (K) 1836 2028 2267 2573 2976 3535
Atomic properties
Oxidation states0,[4] +1, +2, +3 (a mildly basic oxide)
ElectronegativityPauling scale: 1.20
Ionization energies
  • 1st: 593.4 kJ/mol
  • 2nd: 1170 kJ/mol
  • 3rd: 1990 kJ/mol
Atomic radiusempirical: 180 pm
Covalent radius196±6 pm
Color lines in a spectral range
Spectral lines of gadolinium
Other properties
Natural occurrenceprimordial
Crystal structurehexagonal close-packed (hcp) (hP2)
Lattice constants
Hexagonal close packed crystal structure for gadolinium
a = 363.37 pm
c = 578.21 pm (at 20 °C)[3]
Thermal expansion−21.4×10−6/K (at 20 °C)
11.1×10−6/K (at 100 °C)[3][a]
Thermal conductivity10.6 W/(m⋅K)
Electrical resistivityα, poly: 1.310 µΩ⋅m
Magnetic orderingferromagneticparamagnetic transition at 293.4 K
Molar magnetic susceptibility+755000.0×10−6 cm3/mol (300.6 K)[5]
Young's modulusα form: 54.8 GPa
Shear modulusα form: 21.8 GPa
Bulk modulusα form: 37.9 GPa
Speed of sound thin rod2680 m/s (at 20 °C)
Poisson ratioα form: 0.259
Vickers hardness510–950 MPa
CAS Number7440-54-2
History
Namingafter the mineral gadolinite (itself named after Johan Gadolin)
DiscoveryJean Charles Galissard de Marignac (1880)
First isolationLecoq de Boisbaudran (1886)
Isotopes of gadolinium
Main isotopes[6] Decay
abun­dance half-life (t1/2) mode pro­duct
148Gd synth 86.9 y[7] α 144Sm
150Gd synth 1.79×106 y α 146Sm
152Gd 0.2% 1.08×1014 y α 148Sm
153Gd synth 240.6 d ε 153Eu
154Gd 2.18% stable
155Gd 14.8% stable
156Gd 20.5% stable
157Gd 15.7% stable
158Gd 24.8% stable
160Gd 21.9% stable
 Category: Gadolinium
| references

Gadolinium is a chemical element; it has symbol Gd and atomic number 64. Gadolinium is a silvery-white metal when oxidation is removed. It is a malleable and ductile rare-earth element. Gadolinium reacts with atmospheric oxygen or moisture slowly to form a black coating. Gadolinium below its Curie point of 20 °C (68 °F) is ferromagnetic, with an attraction to a magnetic field higher than that of nickel. Above this temperature it is the most paramagnetic element. It is found in nature only in an oxidized form. When separated, it usually has impurities of the other rare-earths because of their similar chemical properties.

Gadolinium was discovered in 1880 by Jean Charles de Marignac, who detected its oxide by using spectroscopy. It is named after the mineral gadolinite, one of the minerals in which gadolinium is found, itself named for the Finnish chemist Johan Gadolin. Pure gadolinium was first isolated by the chemist Paul-Émile Lecoq de Boisbaudran around 1886.

Gadolinium possesses unusual metallurgical properties, to the extent that as little as 1% of gadolinium can significantly improve the workability and resistance to oxidation at high temperatures of iron, chromium, and related metals. Gadolinium as a metal or a salt absorbs neutrons and is, therefore, used sometimes for shielding in neutron radiography and in nuclear reactors.

Like most of the rare earths, gadolinium forms trivalent ions with fluorescent properties, and salts of gadolinium(III) are used as phosphors in various applications.

Gadolinium(III) ions in water-soluble salts are highly toxic to mammals. However, chelated gadolinium(III) compounds prevent the gadolinium(III) from being exposed to the organism and the majority is excreted by healthy[8] kidneys before it can deposit in tissues. Because of its paramagnetic properties, solutions of chelated organic gadolinium complexes are used as intravenously administered gadolinium-based MRI contrast agents in medical magnetic resonance imaging.

  1. ^ "Standard Atomic Weights: Gadolinium". CIAAW. 1969.
  2. ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (4 May 2022). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  3. ^ a b c Arblaster, John W. (2018). Selected Values of the Crystallographic Properties of Elements. Materials Park, Ohio: ASM International. ISBN 978-1-62708-155-9.
  4. ^ Yttrium and all lanthanides except Ce and Pm have been observed in the oxidation state 0 in bis(1,3,5-tri-t-butylbenzene) complexes, see Cloke, F. Geoffrey N. (1993). "Zero Oxidation State Compounds of Scandium, Yttrium, and the Lanthanides". Chem. Soc. Rev. 22: 17–24. doi:10.1039/CS9932200017. and Arnold, Polly L.; Petrukhina, Marina A.; Bochenkov, Vladimir E.; Shabatina, Tatyana I.; Zagorskii, Vyacheslav V.; Cloke (15 December 2003). "Arene complexation of Sm, Eu, Tm and Yb atoms: a variable temperature spectroscopic investigation". Journal of Organometallic Chemistry. 688 (1–2): 49–55. doi:10.1016/j.jorganchem.2003.08.028.
  5. ^ Weast, Robert (1984). CRC, Handbook of Chemistry and Physics. Boca Raton, Florida: Chemical Rubber Company Publishing. pp. E110. ISBN 0-8493-0464-4.
  6. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  7. ^ Chiera, Nadine M.; Dressler, Rugard; Sprung, Peter; Talip, Zeynep; Schumann, Dorothea (2023). "Determination of the half-life of gadolinium-148". Applied Radiation and Isotopes. 194. Elsevier BV: 110708. doi:10.1016/j.apradiso.2023.110708. ISSN 0969-8043.
  8. ^ Donnelly, L., Nelson, R. Renal excretion of gadolinium mimicking calculi on non-contrast CT. Pediatric Radiology 28, 417 (1998). https://doi.org/10.1007/s002470050374


Cite error: There are <ref group=lower-alpha> tags or {{efn}} templates on this page, but the references will not show without a {{reflist|group=lower-alpha}} template or {{notelist}} template (see the help page).


© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search