Iron oxide nanoparticle

Iron oxide nanoparticles are iron oxide particles with diameters between about 1 and 100 nanometers. The two main forms are composed of magnetite (Fe3O4) and its oxidized form maghemite (γ-Fe2O3). They have attracted extensive interest due to their superparamagnetic properties and their potential applications in many fields (although cobalt and nickel are also highly magnetic materials, they are toxic and easily oxidized) including molecular imaging.[1]

Applications of iron oxide nanoparticles include terabit magnetic storage devices, catalysis, sensors, superparamagnetic relaxometry, high-sensitivity biomolecular magnetic resonance imaging, magnetic particle imaging, magnetic fluid hyperthermia, separation of biomolecules, and targeted drug and gene delivery for medical diagnosis and therapeutics. These applications require coating of the nanoparticles by agents such as long-chain fatty acids, alkyl-substituted amines, and diols. [citation needed] They have been used in formulations for supplementation.[2]

  1. ^ Colombo M, Carregal-Romero S, Casula MF, Gutiérrez L, Morales MP, Böhm IB, Heverhagen JT, Prosperi D, Parak WJ (2012). "Biological applications of magnetic nanoparticles". Chem Soc Rev. 41 (11): 4306–4334. doi:10.1039/c2cs15337h. PMID 22481569.
  2. ^ Pai AB (2019). "Chapter 6. Iron Oxide Nanoparticle Formulations for Supplementation". In Sigel A, Freisinger E, Sigel RK, Carver PL (eds.). Essential Metals in Medicine: Therapeutic Use and Toxicity of Metal Ions in the Clinic. Metal Ions in Life Sciences. Vol. 19. Berlin: de Gruyter GmbH. pp. 157–180. doi:10.1515/9783110527872-012. ISBN 978-3-11-052691-2. PMID 30855107. S2CID 216683956.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search