Allotropes of carbon

Eight allotropes of carbon: (a) diamond, (b) graphite, (c) lonsdaleite, (d) C60 buckminsterfullerene, (e) C540 fullerene (f) C70 fullerene, (g) amorphous carbon, (h) zig-zag single-walled carbon nanotube. Missing: cyclocarbon, carbon nanobuds, schwarzites, glassy carbon, and linear acetylenic carbon (carbyne)

Carbon is capable of forming many allotropes (structurally different forms of the same element) due to its valency. Well-known forms of carbon include diamond and graphite. In recent decades, many more allotropes have been discovered and researched, including ball shapes such as buckminsterfullerene and sheets such as graphene. Larger-scale structures of carbon include nanotubes, nanobuds and nanoribbons. Other unusual forms of carbon exist at very high temperatures or extreme pressures. Around 500 hypothetical 3‑periodic allotropes of carbon are known at the present time, according to the Samara Carbon Allotrope Database (SACADA).[1]

  1. ^ Hoffmann, R.; Kabanov, A.; Golov, A.; Proserpio, D. (2016). "Homo citans and carbon allotropes: For an ethics of citation". Angewandte Chemie. 55 (37): 10962–10976. doi:10.1002/anie.201600655. PMC 5113780. PMID 27438532.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search