| |||||||||||||||||||||||||||||||||||||||||
Standard atomic weight Ar°(Ti) | |||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Naturally occurring titanium (22Ti) is composed of five stable isotopes; 46Ti, 47Ti, 48Ti, 49Ti and 50Ti with 48Ti being the most abundant (73.8% natural abundance). Twenty-one radioisotopes have been characterized, with the most stable being 44Ti with a half-life of 60 years, 45Ti with a half-life of 184.8 minutes, 51Ti with a half-life of 5.76 minutes, and 52Ti with a half-life of 1.7 minutes. All of the remaining radioactive isotopes have half-lives that are less than 33 seconds, and the majority of these have half-lives that are less than half a second.[4]
The isotopes of titanium range in atomic mass from 39.00 Da (39Ti) to 64.00 Da (64Ti). The primary decay mode for isotopes lighter than the stable isotopes (lighter than 46Ti) is β+ and the primary mode for the heavier ones (heavier than 50Ti) is β−; their respective decay products are scandium isotopes and the primary products after are vanadium isotopes.[4]
Two stable isotopes of titanium (47Ti and 49Ti) have non-zero nuclear spin of 5/2− and 7/2−, respectively, and thus are NMR-active.[5]
© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search