Yttrium aluminium garnet

Yttrium aluminium garnet
General
Categorysynthetic mineral
Formula
(repeating unit)
Y3Al5O12
Crystal systemCubic
Identification
ColorUsually colorless, but may be pink, red, orange, yellow, green, blue, purple
CleavageNone
FractureConchoidal to uneven
Mohs scale hardness8.5
LusterVitreous to subadamantine
Specific gravity4.5–4.6
Polish lusterVitreous to subadamantine
Optical propertiesSingle refractive
Refractive index1.833±0.010
BirefringenceNone
PleochroismNone
Dispersion0.028
Ultraviolet fluorescenceColorless stones - inert to moderate orange in long wave, inert to weak orange in short wave; blue and pink stones - inert; yellow-green stones - very strong yellow in long and short wave also phosphoresces; green stones - strong red in long wave, weak red in short wave
References[1]

Yttrium aluminium garnet (YAG, Y3Al5O12) is a synthetic crystalline material of the garnet group. It is a cubic yttrium aluminium oxide phase, with other examples being YAlO3 (YAP[2]) in a hexagonal or an orthorhombic, perovskite-like form, and the monoclinic Y4Al2O9 (YAM[3]).[4]

Due to its broad optical transparency,[5] low internal stress, high hardness, chemical and heat resistance, YAG is used for a variety of optics.[6] Its lack of birefringence (unlike sapphire) makes it an interesting material for high-energy/high-power laser systems. Laser damage levels of YAG ranged from 1.1 to 2.2 kJ/cm2 (1064 nm, 10 ns).[7]

YAG, like garnet and sapphire, has no uses as a laser medium when pure. However, after being doped with an appropriate ion, YAG is commonly used as a host material in various solid-state lasers.[8] Rare earth elements such as neodymium and erbium can be doped into YAG as active laser ions, yielding Nd:YAG and Er:YAG lasers, respectively. Cerium-doped YAG (Ce:YAG) is used as a phosphor in cathode ray tubes and white light-emitting diodes, and as a scintillator.

  1. ^ Gemological Institute of America, GIA Gem Reference Guide 1995, ISBN 0-87311-019-6
  2. ^ "YAlO
    3
    ; YAP (YAlO
    3
    ht) Crystal Structure"
    . Springer Materials. Retrieved 2019-12-23.
    .
  3. ^ "Y
    4
    Al
    2
    O
    9
    ; YAM (Y
    4
    Al
    2
    O
    9
    rt) Crystal Structure"
    . Springer Materials. Retrieved 2020-01-28.
  4. ^ Sim, S.M.; Keller, K.A.; Mah, T.I. (2000). "Phase formation in yttrium aluminium garnet powders synthesized by chemical methods". Journal of Materials Science. 35 (3): 713–717. Bibcode:2000JMatS..35..713S. doi:10.1023/A:1004709401795. S2CID 92455146.
  5. ^ Franta, Daniel; Mureșan, Mihai-George (2021-12-01). "Wide spectral range optical characterization of yttrium aluminum garnet (YAG) single crystal by the universal dispersion model". Optical Materials Express. 11 (12): 3930. Bibcode:2021OMExp..11.3930F. doi:10.1364/OME.441088. ISSN 2159-3930. S2CID 239534251.
  6. ^ "Custom YAG (Yttrium Aluminium Garnet, Yttrium Aluminium Oxide Y3Al5O12) optics". Knight Optical. Retrieved 2022-03-15.
  7. ^ Do, Binh T.; Smith, Arlee V. (2009-06-20). "Bulk optical damage thresholds for doped and undoped, crystalline and ceramic yttrium aluminum garnet". Applied Optics. 48 (18): 3509–3514. Bibcode:2009ApOpt..48.3509D. doi:10.1364/AO.48.003509. ISSN 0003-6935. PMID 19543361.
  8. ^ Kalisky, Yehoshua (1997). "Hosts for Solid State Luminescent Systems". In Rotman, Stanley R. (ed.). Wide-Gap Luminescent Materials: Theory and Applications: Theory and Applications. Springer Science & Business Media. ISBN 9780792398370.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search