Rare-earth mineral

Rare-earth ore, shown with a United States penny for size comparison

A rare-earth mineral contains one or more rare-earth elements as major metal constituents. Rare-earth minerals are usually found in association with alkaline to peralkaline igneous complexes in pegmatites. This would be associated with alkaline magmas or with carbonatite intrusives. Perovskite mineral phases are common hosts to rare-earth elements within the alkaline complexes. Minerals are the solid composer of inorganic substances.[1] They are formed through the atomic movement of fluid which can be derived from evaporation, pressure or any physical change.[2] They are mostly determined through their atomic weight.[3] The minerals that are known as 'rare' earth minerals are considered rare due to their unique geochemical makeup and properties.[4] These substances are not normally found in mining affiliated clusters.[4] Thus an indication of these minerals being short in supply and allocated their title as 'rare' earth minerals.[4] Many of our rare-earth minerals include rare-earth elements which thus hold the same significant purpose of rare-earth minerals.[5] Earth's rare minerals have a wide range of purposes, including defense technologies and day-to-day uses.[6] This would be associated with alkaline magmas or with carbonatite intrusives. Perovskite mineral phases are common hosts to rare-earth elements within the alkaline complexes. Mantle-derived carbonate melts are also carriers of the rare earths. Hydrothermal deposits associated with alkaline magmatism contain a variety of rare-earth minerals. Rare-earth minerals are usually found in association with alkaline to peralkaline igneous complexes in pegmatites.

The following includes the relatively common hydrothermal rare-earth minerals and minerals that often contain significant rare-earth substitution:

These elements belong to Group 17, a category known for their scarcity and many purposes.[7] Group 17 elements, also referred to as Rare Earth Elements (REE), make up  a significant portion of our rare earth minerals.[7] These elements exhibit exceptional conductivity and magnetic properties, having diverse applications across various industries.[citation needed] The presence of these elements in rare earth minerals enhances their utility and is a contributor to the complexity of their formation.[8]
  1. ^ "Mineral | Types & Uses". www.britannica.com. 2023-12-22. Retrieved 2024-02-18.
  2. ^ "How do minerals form?". The Australian Museum. Retrieved 2024-02-18.
  3. ^ "Rare-earth element - Minerals, Ores, Uses". www.britannica.com. Retrieved 2024-02-18.
  4. ^ a b c "What are rare earths?". Lynas Rare Earths. Retrieved 2024-02-18.
  5. ^ Zhang, Shuxian (2022-05-09). "Study on Economic Significance of Rare Earth Mineral Resources Development Based on Goal Programming and Few-Shot Learning". Computational Intelligence and Neuroscience. 2022: 7002249. doi:10.1155/2022/7002249. ISSN 1687-5265. PMC 9110130. PMID 35586093.
  6. ^ Van Gosen, Bradley S.; Verplanck, Philip L.; Long, Keith R.; Gambogi, Joseph; Seal, Robert R. (2014). "The rare-earth elements: Vital to modern technologies and lifestyles". Fact Sheet. doi:10.3133/fs20143078. ISSN 2327-6932.
  7. ^ a b "Rare Earths Statistics and Information | U.S. Geological Survey". www.usgs.gov. Retrieved 2024-03-17.
  8. ^ "Rare earth elements facts". natural-resources.canada.ca. 2018-01-23. Retrieved 2024-03-17.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search