Orbital propellant depot

Artist's concept of a proposed United Launch Alliance propellant depot with sun shields.

An orbital propellant depot is a cache of propellant that is placed in orbit around Earth or another body to allow spacecraft or the transfer stage of the spacecraft to be fueled in space. It is one of the types of space resource depots that have been proposed for enabling infrastructure-based space exploration.[1] Many different depot concepts exist depending on the type of fuel to be supplied, location, or type of depot which may also include a propellant tanker that delivers a single load to a spacecraft at a specified orbital location and then departs. In-space fuel depots are not necessarily located near or at a space station.

Potential users of in-orbit refueling and storage facilities include space agencies, defense ministries and communications satellite or other commercial companies.

Satellite servicing depots would extend the lifetime of satellites that have nearly consumed all of their orbital maneuvering fuel and are likely placed in a geosynchronous orbit. The spacecraft would conduct a space rendezvous with the depot, or vice versa, and then transfer propellant to be used for subsequent orbital maneuvers. In 2011, Intelsat showed interest in an initial demonstration mission to refuel several satellites in geosynchronous orbit, but all plans have been since scrapped.[2]

A low Earth orbit (LEO) depot's primary function would be to provide propellant to a transfer stage headed to the Moon, Mars, or possibly a geosynchronous orbit. Since all or a fraction of the transfer stage propellant can be off-loaded, the separately launched spacecraft with payload and/or crew could have a larger mass or use a smaller launch vehicle. With a LEO depot or tanker fill, the size of the launch vehicle can be reduced and the flight rate increased—or, with a newer mission architecture where the beyond-Earth-orbit spacecraft also serves as the second stage, can facilitate much larger payloads—which may reduce the total launch costs since the fixed costs are spread over more flights and fixed costs are usually lower with smaller launch vehicles. A depot could also be placed at Earth-Moon Lagrange point 1 (EML-1) or behind the Moon at EML-2 to reduce costs to travel to the Moon or Mars. Placing a depot in Mars orbit has also been suggested.[3]

In 2024, on Starship’s third integrated flight, propellant transfer in orbit was demonstrated.[4]A capability required for the upcoming Artemis 3 mission which will attempt to land a crew on the Moon with the Starship HLS vehicle.

  1. ^ Cite error: The named reference iac2012 was invoked but never defined (see the help page).
  2. ^ Choi, Charles Q. (January 19, 2012). "Plans Scrapped for Private Robotic Gas Station in Space". Space.com. Archived from the original on November 16, 2018. Retrieved January 24, 2017.
  3. ^ Jon Goff; et al. (2009). "Realistic Near-Term Propellant Depots" (PDF). American Institute of Aeronautics and Astronautics. Archived (PDF) from the original on February 24, 2020. Retrieved September 23, 2009. page 13
  4. ^ "NASA Artemis Mission Progresses with SpaceX Starship Test Flight - NASA". March 14, 2024. Retrieved April 13, 2024.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search