Oberth effect

In astronautics, a powered flyby, or Oberth maneuver, is a maneuver in which a spacecraft falls into a gravitational well and then uses its engines to further accelerate as it is falling, thereby achieving additional speed.[1] The resulting maneuver is a more efficient way to gain kinetic energy than applying the same impulse outside of a gravitational well. The gain in efficiency is explained by the Oberth effect, wherein the use of a reaction engine at higher speeds generates a greater change in mechanical energy than its use at lower speeds. In practical terms, this means that the most energy-efficient method for a spacecraft to burn its fuel is at the lowest possible orbital periapsis, when its orbital velocity (and so, its kinetic energy) is greatest.[1] In some cases, it is even worth spending fuel on slowing the spacecraft into a gravity well to take advantage of the efficiencies of the Oberth effect.[1] The maneuver and effect are named after the person who first described them in 1927, Hermann Oberth, a Transylvanian Saxon physicist and a founder of modern rocketry.[2]

Because the vehicle remains near periapsis only for a short time, for the Oberth maneuver to be most effective the vehicle must be able to generate as much impulse as possible in the shortest possible time. As a result the Oberth maneuver is much more useful for high-thrust rocket engines like liquid-propellant rockets, and less useful for low-thrust reaction engines such as ion drives, which take a long time to gain speed. Low thrust rockets can use the Oberth effect by splitting a long departure burn into several short burns near the periapsis. The Oberth effect also can be used to understand the behavior of multi-stage rockets: the upper stage can generate much more usable kinetic energy than the total chemical energy of the propellants it carries.[2]

In terms of the energies involved, the Oberth effect is more effective at higher speeds because at high speed the propellant has significant kinetic energy in addition to its chemical potential energy.[2]: 204  At higher speed the vehicle is able to employ the greater change (reduction) in kinetic energy of the propellant (as it is exhausted backward and hence at reduced speed and hence reduced kinetic energy) to generate a greater increase in kinetic energy of the vehicle.[2]: 204 

  1. ^ a b c Robert B. Adams, Georgia A. Richardson (25 July 2010). Using the Two-Burn Escape Maneuver for Fast Transfers in the Solar System and Beyond (PDF) (Report). NASA. Archived (PDF) from the original on 11 February 2022. Retrieved 15 May 2015.
  2. ^ a b c d Hermann Oberth (1970). "Ways to spaceflight". Translation of the German language original "Wege zur Raumschiffahrt," (1920). Tunis, Tunisia: Agence Tunisienne de Public-Relations.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search