Wigner's theorem

E.P. Wigner (1902–1995), ForMemRS, first proved the theorem bearing his name. It was a key step towards the modern classification scheme of particle types, according to which particle types are partly characterized by which representation of the Lorentz group under which it transforms. The Lorentz group is a symmetry group of every relativistic quantum field theory. Wigner's early work laid the ground for what many physicists came to call the group theory disease[1] in quantum mechanics – or as Hermann Weyl (co-responsible) puts it in his The Theory of Groups and Quantum Mechanics (preface to 2nd ed.), "It has been rumored that the group pest is gradually being cut out from quantum mechanics. This is certainly not true…"

Wigner's theorem, proved by Eugene Wigner in 1931,[2] is a cornerstone of the mathematical formulation of quantum mechanics. The theorem specifies how physical symmetries such as rotations, translations, and CPT transformations are represented on the Hilbert space of states.

The physical states in a quantum theory are represented by unit vectors in Hilbert space up to a phase factor, i.e. by the complex line or ray the vector spans. In addition, by the Born rule the absolute value of the unit vector's inner product with a unit eigenvector, or equivalently the cosine squared of the angle between the lines the vectors span, corresponds to the transition probability. Ray space, in mathematics known as projective Hilbert space, is the space of all unit vectors in Hilbert space up to the equivalence relation of differing by a phase factor. By Wigner's theorem, any transformation of ray space that preserves the absolute value of the inner products can be represented by a unitary or antiunitary transformation of Hilbert space, which is unique up to a phase factor. As a consequence, the representation of a symmetry group on ray space can be lifted to a projective representation or sometimes even an ordinary representation on Hilbert space.

  1. ^ Seitz, Vogt & Weinberg 2000
  2. ^ Wigner 1931, pp. 251–254 (in German),
    Wigner 1959, pp. 233–236 (English translation).

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search