Sensory processing

Sensory processing is the process that organizes and distinguishes sensation (sensory information) from one's own body and the environment, thus making it possible to use the body effectively within the environment. Specifically, it deals with how the brain processes multiple sensory modality inputs,[1][2] such as proprioception, vision, auditory system, tactile, olfactory, vestibular system, interoception, and taste into usable functional outputs.

It has been believed for some time that inputs from different sensory organs are processed in different areas in the brain. The communication within and among these specialized areas of the brain is known as functional integration.[3][4][5] Newer research has shown that these different regions of the brain may not be solely responsible for only one sensory modality, but could use multiple inputs to perceive what the body senses about its environment. Multisensory integration is necessary for almost every activity that we perform because the combination of multiple sensory inputs is essential for us to comprehend our surroundings.

  1. ^ Stein BE, Stanford TR, Rowland BA (December 2009). "The neural basis of multisensory integration in the midbrain: its organization and maturation". Hear. Res. 258 (1–2): 4–15. doi:10.1016/j.heares.2009.03.012. PMC 2787841. PMID 19345256.
  2. ^ Stein BE, Rowland BA (2011). "Organization and plasticity in multisensory integration". Enhancing Performance for Action and Perception - Multisensory Integration, Neuroplasticity and Neuroprosthetics, Part I. Progress in Brain Research. Vol. 191. pp. 145–63. doi:10.1016/B978-0-444-53752-2.00007-2. ISBN 9780444537522. PMC 3245961. PMID 21741550.
  3. ^ Macaluso E, Driver J (May 2005). "Multisensory spatial interactions: a window onto functional integration in the human brain". Trends Neurosci. 28 (5): 264–271. doi:10.1016/j.tins.2005.03.008. PMID 15866201. S2CID 5685282.
  4. ^ Todman D. (2008). "Wilder Penfield (1891-1976)". Journal of Neurology. 255 (7): 1104–1105. doi:10.1007/s00415-008-0915-6. PMID 18500490. S2CID 36953396.
  5. ^ Harrison BJ, Pujol J, Lopez-Sola M, Hernandez-Ribas R, Deus J, et al. (2008). "Consistency and functional specialization in the default mode brain network". Proceedings of the National Academy of Sciences of the United States of America. 105 (28): 9781–9786. Bibcode:2008PNAS..105.9781H. doi:10.1073/pnas.0711791105. PMC 2474491. PMID 18621692.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search