Self-oscillation

Schematic representation of a self-oscillation as a positive feedback loop. The oscillator V produces a feedback signal B. The controller at R uses this signal to modulate the external power S that acts on the oscillator. If the power is modulated in phase with the oscillator's velocity, a negative damping is established and the oscillation grows until limited by nonlinearities.

Self-oscillation is the generation and maintenance of a periodic motion by a source of power that lacks any corresponding periodicity. The oscillator itself controls the phase with which the external power acts on it. Self-oscillators are therefore distinct from forced and parametric resonators, in which the power that sustains the motion must be modulated externally.

In linear systems, self-oscillation appears as an instability associated with a negative damping term, which causes small perturbations to grow exponentially in amplitude. This negative damping is due to a positive feedback between the oscillation and the modulation of the external source of power. The amplitude and waveform of steady self-oscillations are determined by the nonlinear characteristics of the system.

Self-oscillations are important in physics, engineering, biology, and economics.


© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search