Quantum field theory in curved spacetime

In theoretical physics, quantum field theory in curved spacetime (QFTCS)[1] is an extension of quantum field theory from Minkowski spacetime to a general curved spacetime. This theory uses a semi-classical approach; it treats spacetime as a fixed, classical background, while giving a quantum-mechanical description of the matter and energy propagating through that spacetime. A general prediction of this theory is that particles can be created by time-dependent gravitational fields (multigraviton pair production), or by time-independent gravitational fields that contain horizons. The most famous example of the latter is the phenomenon of Hawking radiation emitted by black holes.

  1. ^ Kay, B. S. (2023). "Quantum Field Theory in Curved Spacetime (2nd edition) (article prepared for the second edition of the Encyclopaedia of Mathematical Physics, edited by M. Bojowald and R. J. Szabo, to be published by Elsevier)". arXiv:2308.14517.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search