In physics and mathematics, a pseudovector (or axial vector)[2] is a quantity that transforms like a vector under continuous rigid transformations such as rotations or translations, but which does not transform like a vector under certain discontinuous rigid transformations such as reflections. For example, the angular velocity of a rotating object is a pseudovector because, when the object is reflected in a mirror, the reflected image rotates in such a way so that its angular velocity "vector" is not the mirror image of the angular velocity "vector" of the original object; for true vectors (also known as polar vectors), the reflection "vector" and the original "vector" must be mirror images.[3]
One example of a pseudovector is the normal to an oriented plane. An oriented plane can be defined by two non-parallel vectors, a and b,[4] that span the plane. The vector a × b is a normal to the plane (there are two normals, one on each side – the right-hand rule will determine which), and is a pseudovector. This has consequences in computer graphics, where it has to be considered when transforming surface normals. In three dimensions, the curl of a polar vector field at a point and the cross product of two polar vectors are pseudovectors.[5]
A number of quantities in physics behave as pseudovectors rather than polar vectors, including magnetic field and torque. In mathematics, in three dimensions, pseudovectors are equivalent to bivectors, from which the transformation rules of pseudovectors can be derived. More generally, in n-dimensional geometric algebra, pseudovectors are the elements of the algebra with dimension n − 1, written ⋀n−1Rn. The label "pseudo-" can be further generalized to pseudoscalars and pseudotensors, both of which gain an extra sign-flip under improper rotations compared to a true scalar or tensor.
© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search