Electronic devices have significantly influenced the development of many aspects of modern society, such as telecommunications, entertainment, education, health care, industry, and security. The main driving force behind the advancement of electronics is the semiconductor industry, which continually produces ever-more sophisticated electronic devices and circuits in response to global demand. The semiconductor industry is one of the global economy's largest and most profitable sectors, with annual revenues exceeding $481 billion in 2018. The electronics industry also encompasses other sectors that rely on electronic devices and systems, such as e-commerce, which generated over $29 trillion in online sales in 2017. (Full article...)
These are Good articles, which meet a core set of high editorial standards.
Image 1
The iPhone 6 and iPhone 6 Plus are smartphones that were developed and marketed by Apple Inc. They are the eighth generation of the iPhone, succeeding the iPhone 5, iPhone 5c and iPhone 5s, and were announced on September 9, 2014, and released on September 19, 2014. The iPhone 6 and iPhone 6 Plus jointly were themselves replaced as the flagship devices of the iPhone series by the iPhone 6s and iPhone 6s Plus on September 9, 2015. The iPhone 6 and 6 Plus respectively include larger 4.7-inch and 5.5-inch displays, a faster processor, upgraded cameras, improved LTE and Wi-Fi connectivity and support for a near-field communications-based mobile payments offering.
The iPhone 6 and 6 Plus received positive reviews, with critics regarding their redesign, specifications, camera, price point, and battery life as being improvements over previous iPhone models. However, aspects of the design of iPhone 6 were also criticized, including plastic strips on the rear of the device for its antenna that disrupted the otherwise metal exterior, and the screen resolution of the standard-sized iPhone 6 being lower than other devices in its class. The iPhone 6 sold extremely well, making it the best-selling iPhone model and the most successful smartphone to date. (Full article...)
The actual impedance may vary quite considerably from the nominal figure with changes in frequency. In the case of cables and other transmission lines, there is also variation along the length of the cable, if it is not properly terminated. (Full article...)
Image 3
The Revox B215 is a cassette deck manufactured by Studer from 1985 until around 1990. A professional version with different control layout and audio path electronics was manufactured concurrently as the Studer A721. A later improved version was marketed as the Revox B215S. Because it was expensive compared to other consumer models and had exceptionally good mechanical performance and durability, the B215 was used primarily by professional customers—radio stations, recording studios and real-time cassette duplicators.
The B215 used a proven, reliable four-motor tape transport derived from the earlier B710 model. The B215 differed from the B710 and competing decks of the period in having an unusual, computer-like control panel and elaborate automation performed by three Philipsmicrocontrollers. The deck was equipped with automatic tape calibration, microcontroller-assisted setting of recording levels, and non-volatile memory. (Full article...)
Image 4
A 10 dB 1.7–2.2 GHz directional coupler. From left to right: input, coupled, isolated (terminated with a load), and transmitted port. Power dividers (also power splitters and, when used in reverse, power combiners) and directional couplers are passive devices used mostly in the field of radio technology. They couple a defined amount of the electromagnetic power in a transmission line to a port enabling the signal to be used in another circuit. An essential feature of directional couplers is that they only couple power flowing in one direction. Power entering the output port is coupled to the isolated port but not to the coupled port. A directional coupler designed to split power equally between two ports is called a hybrid coupler.
Directional couplers are most frequently constructed from two coupled transmission lines set close enough together such that energy passing through one is coupled to the other. This technique is favoured at the microwave frequencies where transmission line designs are commonly used to implement many circuit elements. However, lumped component devices are also possible at lower frequencies, such as the audio frequencies encountered in telephony. Also at microwave frequencies, particularly the higher bands, waveguide designs can be used. Many of these waveguide couplers correspond to one of the conducting transmission line designs, but there are also types that are unique to waveguide. (Full article...)
Image 5
An antimetric electrical network is an electrical network that exhibits anti-symmetrical electrical properties. The term is often encountered in filter theory, but it applies to general electrical network analysis. Antimetric is the diametrical opposite of symmetric; it does not merely mean "asymmetric" (i.e., "lacking symmetry"). It is possible for networks to be symmetric or antimetric in their electrical properties without being physically or topologically symmetric or antimetric. (Full article...)
Image 6
The Sinclair Sovereign was a high-end calculator introduced by Clive Sinclair's company Sinclair Radionics in 1976. It was an attempt to escape from the unprofitable low end of the market, and one of the last calculators Sinclair produced. Made with a case of pressed steel that a variety of finishes, it cost between £30 and £60 at a time when other calculators could be purchased for under £5. A number of factors meant that the Sovereign was not a commercial success, including the cost, high import levies on components, competition from cheaper calculators manufactured abroad, and the development of more power-efficient designs using liquid-crystal displays. Though it came with a five-year guarantee, issues such as short battery life limited its usefulness. The company moved on to producing computers soon afterwards.
Waffle-iron filters are particularly suitable where both a wide passband, and a wide stopband free of spurious transmission modes, are required. They also have a high power-handling capability. Applications include suppressing the harmonic output of transmitters and the design of wide-band diplexers. They are also used in industrial microwave manufacturing processes to prevent the escape of microwave radiation from the microwave chamber. Filters with an analogous design are now appearing in photonics, but, due to the higher frequency, at a much smaller scale. This small size allows them to be incorporated into integrated circuits. (Full article...)
The image method of filter design determines the properties of filter sections by calculating the properties they would have in an infinite chain of identical sections. In this, the analysis parallels transmission line theory on which it is based. Filters designed by this method are called image parameter filters, or just image filters. An important parameter of image filters is their image impedance, the impedance of an infinite chain of identical sections. (Full article...)
Image 9
The first-generation iPad (/ˈaɪpæd/; EYE-pad) (retrospectively referred to unofficially as the iPad 1 or original iPad) is a tablet computer designed and marketed by Apple Inc. as the first device in the iPad lineup of tablet computers. It features an Apple A4SoC, a 9.7 in (250 mm) touchscreen display, and, on certain variants, the capability of accessing cellular networks. Using the iOS operating system, the iPad can play music, send and receive emails and browse the web. Other functions, which include the ability to play games and access references, GPS navigation software and social network services, can be enabled by downloading apps.
The device was announced and unveiled on January 27, 2010, by Steve Jobs, Apple's CEO, at an Apple press event. On April 3, 2010, the Wi-Fi variant of the device was released in the United States, followed by the release of the "Wi-Fi + 3G" variant on April 30. On May 28, 2010, it was released in Australia, Canada, France, Japan, Italy, Germany, Spain, Switzerland and the United Kingdom. (Full article...)
This approach is especially useful in the design of mechanical filters—these use mechanical devices to implement an electrical function. However, the technique can be used to solve purely mechanical problems, and can also be extended into other, unrelated, energy domains. Nowadays, analysis by analogy is a standard design tool wherever more than one energy domain is involved. It has the major advantage that the entire system can be represented in a unified, coherent way. Electrical analogies are particularly used by transducer designers, by their nature they cross energy domains, and in control systems, whose sensors and actuators will typically be domain-crossing transducers. A given system being represented by an electrical analogy may conceivably have no electrical parts at all. For this reason domain-neutral terminology is preferred when developing network diagrams for control systems. (Full article...)
Image 11
The circuit topology of an electronic circuit is the form taken by the network of interconnections of the circuit components. Different specific values or ratings of the components are regarded as being the same topology. Topology is not concerned with the physical layout of components in a circuit, nor with their positions on a circuit diagram; similarly to the mathematical concept of topology, it is only concerned with what connections exist between the components. Numerous physical layouts and circuit diagrams may all amount to the same topology.
Strictly speaking, replacing a component with one of an entirely different type is still the same topology. In some contexts, however, these can loosely be described as different topologies. For instance, interchanging inductors and capacitors in a low-passfilter results in a high-pass filter. These might be described as high-pass and low-pass topologies even though the network topology is identical. A more correct term for these classes of object (that is, a network where the type of component is specified but not the absolute value) is prototype network. (Full article...)
Numerically controlled oscillators offer several advantages over other types of oscillators in terms of agility, accuracy, stability and reliability. NCOs are used in many communications systems including digital up/down converters used in 3G wireless and software radio systems, digital phase-locked loops, radar systems, drivers for optical or acoustic transmissions, and multilevel FSK/PSK modulators/demodulators. (Full article...)
Filters are required to operate at many different frequencies, impedances and bandwidths. The utility of a prototype filter comes from the property that all these other filters can be derived from it by applying a scaling factor to the components of the prototype. The filter design need thus only be carried out once in full, with other filters being obtained by simply applying a scaling factor. (Full article...)
Image 14
The JBL Paragon, measuring almost 9 feet (2.7 m) from left to right The JBL D44000 Paragon is a one-piece stereo loudspeaker created by JBL that was introduced in 1957 and discontinued in 1983; its production run was the longest of any JBL speaker. At its launch, the Paragon was the most expensive domestic loudspeaker on the market.
Designed by Arnold Wolf from a concept elaborated by Richard Ranger, it is almost 9 feet (2.7 m) long and requires over a hundred-man hours of hand-finishing by a team of dedicated craftsmen. Resembling less a conventional loudspeaker than an elegant sideboard, it is a landmark product for the company that was sought after by the well-heeled and by celebrities. With an estimated total production of about 1,000 units, it is highly sought after by collectors to this day. (Full article...)
Image 15
A time-domain reflectometer; an instrument used to locate the position of faults on lines from the time taken for a reflected wave to return from the discontinuity. A signal travelling along an electrical transmission line will be partly, or wholly, reflected back in the opposite direction when the travelling signal encounters a discontinuity in the characteristic impedance of the line, or if the far end of the line is not terminated in its characteristic impedance. This can happen, for instance, if two lengths of dissimilar transmission lines are joined.
This article is about signal reflections on electrically conducting lines. Such lines are loosely referred to as copper lines, and indeed, in telecommunications are generally made from copper, but other metals are used, notably aluminium in power lines. Although this article is limited to describing reflections on conducting lines, this is essentially the same phenomenon as optical reflections in fibre-optic lines and microwave reflections in waveguides. (Full article...)
Electrical resistance is a measure of the degree to which an object opposes the passage of an electric current. The SI unit of electrical resistance is the ohm. Its reciprocal quantity is electrical conductance measured in siemens. The quantity of resistance in an electric circuit determines the amount of current flowing in the circuit for any given voltage applied to the circuit.
where;R is the resistance of the object, usually measured in ohms, equivalent to J·s/C2, V is the potential difference across the object, usually measured in volts, I is the current passing through the object, usually measured in amperes. For a wide variety of materials and conditions, the electrical resistance does not depend on the amount of current flowing or the amount of applied voltage. V can either be measured directly across the object or calculated from a subtraction of voltages relative to a reference point.
... that in Yugoslavia, Rudi Čajavec, the electronics company that produced various components of the M-84 tank, also made guitar amplifiers?
Consumer showcase
An organic light-emitting diode (OLED) is a special type of light-emitting diode in which the emissive layer comprises a thin-film of certain organic compounds. The emissive electroluminescent layer can include a polymeric substance that allows the deposition of suitable organic compounds, for example, in rows and columns on a flat carrier by using a simple "printing" method to create a matrix of pixels which can emit different colored light. Such systems can be used in television screens, computer displays, portable system screens, advertising and information, and indication applications etc. OLEDs can also be used in light sources for general space illumination.