Interplanetary dust cloud

The interplanetary dust cloud illuminated and visible as zodiacal light, with its parts the false dawn,[1] gegenschein and the rest of its band, which is visually crossed by the Milky Way, in this composite image of the night sky above the northern and southern hemisphere

The interplanetary dust cloud, or zodiacal cloud (as the source of the zodiacal light), consists of cosmic dust (small particles floating in outer space) that pervades the space between planets within planetary systems, such as the Solar System.[2] This system of particles has been studied for many years in order to understand its nature, origin, and relationship to larger bodies. There are several methods to obtain space dust measurement.

In the Solar System, interplanetary dust particles have a role in scattering sunlight and in emitting thermal radiation, which is the most prominent feature of the night sky's radiation, with wavelengths ranging 5–50 μm.[3] The particle sizes of grains characterizing the infrared emission near Earth's orbit typically range 10–100 μm.[4] Microscopic impact craters on lunar rocks returned by the Apollo Program[5] revealed the size distribution of cosmic dust particles bombarding the lunar surface. The ’’Grün’’ distribution of interplanetary dust at 1 AU,[6] describes the flux of cosmic dust from nm to mm sizes at 1 AU.

The total mass of the interplanetary dust cloud is approximately 3.5×1016 kg, or the mass of an asteroid of radius 15 km (with density of about 2.5 g/cm3).[7] Straddling the zodiac along the ecliptic, this dust cloud is visible as the zodiacal light in a moonless and naturally dark sky and is best seen sunward during astronomical twilight.

The Pioneer spacecraft observations in the 1970s linked the zodiacal light with the interplanetary dust cloud in the Solar System.[8] Also, the VBSDC instrument on the New Horizons probe was designed to detect impacts of the dust from the zodiacal cloud in the Solar System.[9]

  1. ^ "False Dawn". www.eso.org. Retrieved 14 February 2017.
  2. ^ "What scientists found after sifting through dust in the solar system - bri". EurekAlert!. NASA. 12 March 2019. Retrieved 12 March 2019.
  3. ^ Levasseur-Regourd, A.C., 1996
  4. ^ Backman, D., 1997
  5. ^ Morrison, D.A.; Clanton, U.S. (1979). "Properties of microcraters and cosmic dust of less than 1000 Å dimensions". Proceedings of Lunar and Planetary Science Conference 10th, Houston, Tex., March 19–23, 1979. 2. New York: Pergamon Press Inc.: 1649–1663. Bibcode:1979LPSC...10.1649M. Retrieved 3 February 2022.
  6. ^ Grün, E.; Zook, H.A.; Fechtig, H.; Giese, R.H. (May 1985). "Collisional balance of the meteoritic complex". Icarus. 62 (2): 244–272. Bibcode:1985Icar...62..244G. doi:10.1016/0019-1035(85)90121-6. Retrieved 23 January 2022.
  7. ^ Pavlov, Alexander A.; Pavlov, Anatoli K.; Kasting, James F. (1999). "Irradiated interplanetary dust particles as a possible solution for the deuterium/hydrogen paradox of Earth's oceans". Journal of Geophysical Research: Planets. 104 (E12): 30725–28. Bibcode:1999JGR...10430725P. doi:10.1029/1999JE001120. PMID 11543198.
  8. ^ Hannter; et al. (1976). "Pioneer 10 observations of zodiacal light brightness near the ecliptic - Changes with heliocentric distance".
  9. ^ Horányi, M.; Hoxie, V.; James, D.; Poppe, A.; Bryant, C.; Grogan, B.; Lamprecht, B.; Mack, J.; Bagenal, F.; S. Batiste; Bunch, N.; Chantanowich, T.; Christensen, F.; Colgan, M.; Dunn; Drake, G.; Fernandez, A.; Finley, T.; Holland, G.; Jenkins, A.; Krauss, C.; Krauss, E.; Krauss, O.; Lankton, M.; Mitchell, C.; Neeland, M.; Resse, T.; Rash, K.; Tate, G.; Vaudrin, C.; Westfall, J. (2008). "The Student Dust Counter on the New Horizons Mission" (PDF). Space Science Reviews. 140 (1–4): 387–402. Bibcode:2008SSRv..140..387H. doi:10.1007/s11214-007-9250-y. S2CID 17522966. Retrieved 17 September 2022.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search