Ignition timing

Pressure in cylinder pattern in dependence on ignition timing: (a) - misfire, (b) too soon, (c) optimal, (d) too late.

In a spark ignition internal combustion engine, ignition timing is the timing, relative to the current piston position and crankshaft angle, of the release of a spark in the combustion chamber near the end of the compression stroke.

The need for advancing (or retarding) the timing of the spark is because fuel does not completely burn the instant the spark fires. The combustion gases take a period of time to expand and the angular or rotational speed of the engine can lengthen or shorten the time frame in which the burning and expansion should occur. In a vast majority of cases, the angle will be described as a certain angle advanced before top dead center (BTDC). Advancing the spark BTDC means that the spark is energized prior to the point where the combustion chamber reaches its minimum size, since the purpose of the power stroke in the engine is to force the combustion chamber to expand. Sparks occurring after top dead center (ATDC) are usually counter-productive (producing wasted spark, back-fire, engine knock, etc.) unless there is need for a supplemental or continuing spark prior to the exhaust stroke.

Setting the correct ignition timing is crucial in the performance of an engine. Sparks occurring too soon or too late in the engine cycle are often responsible for excessive vibrations and even engine damage. The ignition timing affects many variables including engine longevity, fuel economy, and engine power. Many variables also affect what the "best" timing is. Modern engines that are controlled in real time by an engine control unit use a computer to control the timing throughout the engine's RPM and load range. Older engines that use mechanical distributors rely on inertia (by using rotating weights and springs) and manifold vacuum in order to set the ignition timing throughout the engine's RPM and load range.

Early cars required the driver to adjust timing via controls according to driving conditions, but this is now automated.

There are many factors that influence proper ignition timing for a given engine. These include the timing of the intake valve(s) or fuel injector(s), the type of ignition system used, the type and condition of the spark plugs, the contents and impurities of the fuel, fuel temperature and pressure, engine speed and load, air and engine temperature, turbo boost pressure or intake air pressure, the components used in the ignition system, and the settings of the ignition system components. Usually, any major engine changes or upgrades will require a change to the ignition timing settings of the engine.[1]

  1. ^ Julian Edgar. "Getting the Ignition Timing Right".

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search