Fine-tuning (deep learning)

In deep learning, fine-tuning is an approach to transfer learning in which the parameters of a pre-trained model are trained on new data.[1] Fine-tuning can be done on the entire neural network, or on only a subset of its layers, in which case the layers that are not being fine-tuned are "frozen" (not updated during the backpropagation step).[2] A model may also be augmented with "adapters" that consist of far fewer parameters than the original model, and fine-tuned in a parameter–efficient way by tuning the weights of the adapters and leaving the rest of the model's weights frozen.[3]

For some architectures, such as convolutional neural networks, it is common to keep the earlier layers (those closest to the input layer) frozen because they capture lower-level features, while later layers often discern high-level features that can be more related to the task that the model is trained on.[2][4]

Models that are pre-trained on large and general corpora are usually fine-tuned by reusing the model's parameters as a starting point and adding a task-specific layer trained from scratch.[5] Fine-tuning the full model is common as well and often yields better results, but it is more computationally expensive.[6]

Fine-tuning is typically accomplished with supervised learning, but there are also techniques to fine-tune a model using weak supervision.[7] Fine-tuning can be combined with a reinforcement learning from human feedback-based objective to produce language models like ChatGPT (a fine-tuned version of GPT-3) and Sparrow.[8][9]

  1. ^ Quinn, Joanne (2020). Dive into deep learning: tools for engagement. Thousand Oaks, California. p. 551. ISBN 978-1-5443-6137-6. Archived from the original on January 10, 2023. Retrieved January 10, 2023.{{cite book}}: CS1 maint: location missing publisher (link)
  2. ^ a b "CS231n Convolutional Neural Networks for Visual Recognition". cs231n.github.io. Retrieved 9 March 2023.
  3. ^ Liu, Haokun; Tam, Derek; Muqeeth, Mohammed; Mohta, Jay; Huang, Tenghao; Bansal, Mohit; Raffel, Colin A (2022). Koyejo, S.; Mohamed, S.; Agarwal, A.; Belgrave, D.; Cho, K.; Oh, A. (eds.). Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning (PDF). Advances in Neural Information Processing Systems. Vol. 35. Curran Associates, Inc. pp. 1950–1965.
  4. ^ Zeiler, Matthew D; Fergus, Rob (2013). "Visualizing and Understanding Convolutional Networks". ECCV. arXiv:1311.2901.
  5. ^ Dodge, Jesse; Ilharco, Gabriel; Schwartz, Roy; Farhadi, Ali; Hajishirzi, Hannaneh; Smith, Noah (2020). "Fine-Tuning Pretrained Language Models: Weight Initializations, Data Orders, and Early Stopping". arXiv:2002.06305. {{cite journal}}: Cite journal requires |journal= (help)
  6. ^ Cite error: The named reference amazon was invoked but never defined (see the help page).
  7. ^ Yu, Yue; Zuo, Simiao; Jiang, Haoming; Ren, Wendi; Zhao, Tuo; Zhang, Chao (2020). "Fine-Tuning Pre-trained Language Model with Weak Supervision: A Contrastive-Regularized Self-Training Approach". Association for Computational Linguistics. arXiv:2010.07835.
  8. ^ "Introducing ChatGPT". openai.com. Retrieved 9 March 2023.
  9. ^ Glaese, Amelia; McAleese, Nat; Trębacz, Maja; Aslanides, John; Firoiu, Vlad; Ewalds, Timo; Rauh, Maribeth; Weidinger, Laura; Chadwick, Martin; Thacker, Phoebe; Campbell-Gillingham, Lucy; Uesato, Jonathan; Huang, Po-Sen; Comanescu, Ramona; Yang, Fan; See, Abigail; Dathathri, Sumanth; Greig, Rory; Chen, Charlie; Fritz, Doug; Elias, Jaume Sanchez; Green, Richard; Mokrá, Soňa; Fernando, Nicholas; Wu, Boxi; Foley, Rachel; Young, Susannah; Gabriel, Iason; Isaac, William; Mellor, John; Hassabis, Demis; Kavukcuoglu, Koray; Hendricks, Lisa Anne; Irving, Geoffrey (2022). "Improving alignment of dialogue agents via targeted human judgements". arXiv:2209.14375. {{cite journal}}: Cite journal requires |journal= (help)

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search