Cancer causing exposure to ionizing radiation in spaceflight
This article may require cleanup to meet Wikipedia's quality standards. The specific problem is: This article reads as if it is a research paper and not an encyclopedia article (in part because it is mostly cut and paste from the public domain study by NASA). It needs to be moved to a more encyclopedic topic heading, perhaps something like Cancer and spaceflight, and re-written in an encyclopedia article style. Please help improve this article if you can.(July 2012) (Learn how and when to remove this message)
The Phantom Torso, as seen here in the Destiny laboratory on the International Space Station (ISS), is designed to measure the effects of radiation on organs inside the body by using a torso that is similar to those used to train radiologists on Earth. The torso is equivalent in height and weight to an average adult male. It contains radiation detectors that will measure, in real-time, how much radiation the brain, thyroid, stomach, colon, and heart and lung area receive on a daily basis. The data will be used to determine how the body reacts to and shields its internal organs from radiation, which will be important for longer duration space flights.
Astronauts are exposed to approximately 72 millisieverts (mSv) while on six-month-duration missions to the International Space Station (ISS). Longer 3-year missions to Mars, however, have the potential to expose astronauts to radiation in excess of 1000 mSv. Without the protection provided by Earth's magnetic field, the rate of exposure is dramatically increased. [1][2][failed verification] The risk of cancer caused by ionizing radiation is well documented at radiation doses beginning at 100 mSv and above.[1][3][4]
^Cucinotta, F.A.; Durante, M. "Risk of Radiation Carcinogenesis"(PDF). Human Health and Performance Risks of Space Exploration Missions Evidence reviewed by the NASA Human Research Program. NASA. p. 121. Retrieved 6 June 2012.