Dynamic covalent chemistry

Dynamic covalent chemistry (DCvC) is a synthetic strategy employed by chemists to make complex molecular and supramolecular assemblies from discrete molecular building blocks.[1] DCvC has allowed access to complex assemblies such as covalent organic frameworks, molecular knots, polymers, and novel macrocycles.[2] Not to be confused with dynamic combinatorial chemistry, DCvC concerns only covalent bonding interactions. As such, it only encompasses a subset of supramolecular chemistries.

The underlying idea is that rapid equilibration allows the coexistence of a variety of different species among which molecules can be selected with desired chemical, pharmaceutical and biological properties. For instance, the addition of a proper template will shift the equilibrium toward the component that forms the complex of higher stability (thermodynamic template effect). After the new equilibrium is established, the reaction conditions are modified to stop equilibration. The optimal binder for the template is then extracted from the reactional mixture by the usual laboratory procedures. The property of self-assembly and error-correcting that allow DCvC to be useful in supramolecular chemistry rely on the dynamic property.

  1. ^ Jin, Yinghua; Yu, Chao; Denman, Ryan J.; Zhang, Wei (2013-08-21). "Recent advances in dynamic covalent chemistry". Chemical Society Reviews. 42 (16): 6634–6654. doi:10.1039/c3cs60044k. ISSN 1460-4744. PMID 23749182.
  2. ^ Jin, Yinghua; Wang, Qi; Taynton, Philip; Zhang, Wei (2014-05-20). "Dynamic Covalent Chemistry Approaches Toward Macrocycles, Molecular Cages, and Polymers". Accounts of Chemical Research. 47 (5): 1575–1586. doi:10.1021/ar500037v. ISSN 0001-4842. PMID 24739018.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search