Displacement measurement

Displacement measurement is the measurement of changes in directed distance (displacement). Devices measuring displacement are based on displacement sensors, which can be contacting or non-contacting.[1] Some displacement sensors are based on displacement transducers,[2] devices which convert displacement into another form of energy.[3]

Displacement sensors can be used to indirectly measure a number of other quantities, including deformation, distortion, thermal expansion, thickness (normally through the combination of two sensors), vibration, spindle motion, fluid level, strain and mechanical shock.[1]

Displacement sensors exist that can measure displacement on the order of nanometers or smaller.[1]

  1. ^ a b c Leach, Richard (2014-01-01), Leach, Richard (ed.), "Chapter 5 - Displacement Measurement", Fundamental Principles of Engineering Nanometrology (Second Edition), Micro and Nano Technologies, Oxford: William Andrew Publishing, pp. 95–132, ISBN 978-1-4557-7753-2, retrieved 2024-12-04, At the heart of all instruments that measure a change in length, or coordinates, are displacement sensors. ... Displacement sensors can be contacting or non-contacting, and often can be configured to measure velocity and acceleration.
  2. ^ Mendelson, Yitzhak (2012-01-01), Enderle, John D.; Bronzino, Joseph D. (eds.), "Chapter 10 - Biomedical Sensors", Introduction to Biomedical Engineering (Third Edition), Biomedical Engineering, Boston: Academic Press, pp. 609–666, ISBN 978-0-12-374979-6, retrieved 2024-12-04, Displacement transducers are typically used to measure physical changes in the position of an object or medium.
  3. ^ "transducer". Merriam-Webster.com Dictionary. Merriam-Webster.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search