Conductivity (electrolytic)

Conductivity or specific conductance of an electrolyte solution is a measure of its ability to conduct electricity. The SI unit of conductivity is siemens per meter (S/m).

Conductivity measurements are used routinely in many industrial and environmental applications as a fast, inexpensive and reliable way of measuring the ionic content in a solution.[1] For example, the measurement of product conductivity is a typical way to monitor and continuously trend the performance of water purification systems.

The electrolytic conductivity of ultra-high purity water increases as a function of temperature (T) due to the higher dissociation of H2O in H+ andOH with T.

In many cases, conductivity is linked directly to the total dissolved solids (TDS).

High quality deionized water has a conductivity of
at 25 °C.
This corresponds to a specific resistivity of
.[2]
The preparation of salt solutions often takes place in unsealed beakers. In this case the conductivity of purified water often is 10 to 20 times higher. A discussion can be found below.

Typical drinking water is in the range of 200–800 μS/cm, while sea water is about 50 mS/cm[3] (or 0.05 S/cm).

Conductivity is traditionally determined by connecting the electrolyte in a Wheatstone bridge. Dilute solutions follow Kohlrausch's law of concentration dependence and additivity of ionic contributions. Lars Onsager gave a theoretical explanation of Kohlrausch's law by extending Debye–Hückel theory.

  1. ^ Gray, James R. (2004). "Conductivity Analyzers and Their Application". In Down, R. D.; Lehr, J. H. (eds.). Environmental Instrumentation and Analysis Handbook. Wiley. pp. 491–510. ISBN 978-0-471-46354-2. Retrieved 10 May 2009.
  2. ^ Light, Truman; Licht, Stuart; Bevilaqua, Anthony; Morash, Kenneth (2004). "The Fundamental Conductivity and Resistivity of Water". Electrochemical and Solid-State Letters. 8 (1): E16–E19.
  3. ^ "Water Conductivity". Lenntech. Retrieved 5 January 2013.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search