Boyle's law

An animation showing the relationship between pressure and volume when mass and temperature are held constant

Boyle's law, also referred to as the Boyle–Mariotte law or Mariotte's law (especially in France), is an empirical gas law that describes the relationship between pressure and volume of a confined gas. Boyle's law has been stated as:

The absolute pressure exerted by a given mass of an ideal gas is inversely proportional to the volume it occupies if the temperature and amount of gas remain unchanged within a closed system.[1][2]

Mathematically, Boyle's law can be stated as:

Pressure is inversely proportional to the volume

or

PV = k Pressure multiplied by volume equals some constant k

where P is the pressure of the gas, V is the volume of the gas, and k is a constant.

Boyle's law states that when the temperature of a given mass of confined gas is constant, the product of its pressure and volume is also constant. When comparing the same substance under two different sets of conditions, the law can be expressed as:

showing that as volume increases, the pressure of a gas decreases proportionally, and vice versa.

Boyle's law is named after Robert Boyle, who published the original law in 1662.[3] An equivalent law is Mariotte’s law named after French physicist Edme Mariotte.

  1. ^ Levine, Ira. N (1978). "Physical Chemistry" University of Brooklyn: McGraw-Hill
  2. ^ Levine, Ira. N. (1978), p. 12 gives the original definition.
  3. ^ In 1662, he published a second edition of the 1660 book New Experiments Physico-Mechanical, Touching the Spring of the Air, and its Effects with an addendum Whereunto is Added a Defence of the Authors Explication of the Experiments, Against the Obiections of Franciscus Linus and Thomas Hobbes; see J Appl Physiol 98: 31–39, 2005. (Jap.physiology.org Online.)

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search