Fit approximation |
---|
![]() |
Concepts |
Other fundamentals |
Big O notation is a mathematical notation that describes the limiting behavior of a function when the argument tends towards a particular value or infinity. Big O is a member of a family of notations invented by German mathematicians Paul Bachmann,[1] Edmund Landau,[2] and others, collectively called Bachmann–Landau notation or asymptotic notation. The letter O was chosen by Bachmann to stand for Ordnung, meaning the order of approximation.
In computer science, big O notation is used to classify algorithms according to how their run time or space requirements [a] grow as the input size grows.[3] In analytic number theory, big O notation is often used to express a bound on the difference between an arithmetical function and a better understood approximation; one well-known example is the remainder term in the prime number theorem. Big O notation is also used in many other fields to provide similar estimates.
Big O notation characterizes functions according to their growth rates: different functions with the same asymptotic growth rate may be represented using the same O notation. The letter O is used because the growth rate of a function is also referred to as the order of the function. A description of a function in terms of big O notation usually only provides an upper bound on the growth rate of the function.
Associated with big O notation are several related notations, using the symbols , , , and to describe other kinds of bounds on asymptotic growth rates.[3]
Bachmann
was invoked but never defined (see the help page).
Landau
was invoked but never defined (see the help page).
Cite error: There are <ref group=lower-alpha>
tags or {{efn}}
templates on this page, but the references will not show without a {{reflist|group=lower-alpha}}
template or {{notelist}}
template (see the help page).
© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search