Bicycle and motorcycle dynamics

A computer-generated, simplified model of bike and rider demonstrating an uncontrolled right turn.
Animation of a computer-generated, simplified model of bike and passive rider demonstrating uncontrolled, but stable weave.
Bicycles leaning in a turn.

Bicycle and motorcycle dynamics is the science of the motion of bicycles and motorcycles and their components, due to the forces acting on them. Dynamics falls under a branch of physics known as classical mechanics. Bike motions of interest include balancing, steering, braking, accelerating, suspension activation, and vibration. The study of these motions began in the late 19th century and continues today.[1][2][3]

Bicycles and motorcycles are both single-track vehicles and so their motions have many fundamental attributes in common and are fundamentally different from and more difficult to study than other wheeled vehicles such as dicycles, tricycles, and quadracycles.[4] As with unicycles, bikes lack lateral stability when stationary, and under most circumstances can only remain upright when moving forward. Experimentation and mathematical analysis have shown that a bike stays upright when it is steered to keep its center of mass over its wheels. This steering is usually supplied by a rider, or in certain circumstances, by the bike itself. Several factors, including geometry, mass distribution, and gyroscopic effect all contribute in varying degrees to this self-stability, but long-standing hypotheses and claims that any single effect, such as gyroscopic or trail, is solely responsible for the stabilizing force have been discredited.[1][5][6][7]

While remaining upright may be the primary goal of beginning riders, a bike must lean in order to maintain balance in a turn: the higher the speed or smaller the turn radius, the more lean is required. This balances the roll torque about the wheel contact patches generated by centrifugal force due to the turn with that of the gravitational force. This lean is usually produced by a momentary steering in the opposite direction, called countersteering. Countersteering skill is usually acquired by motor learning and executed via procedural memory rather than by conscious thought. Unlike other wheeled vehicles, the primary control input on bikes is steering torque, not position.[8]

Although longitudinally stable when stationary, bikes often have a high enough center of mass and a short enough wheelbase to lift a wheel off the ground under sufficient acceleration or deceleration. When braking, depending on the location of the combined center of mass of the bike and rider with respect to the point where the front wheel contacts the ground, and if the front brake is applied hard enough, bikes can either: skid the front wheel which may or not result in a crash; or flip the bike and rider over the front wheel. A similar situation is possible while accelerating, but with respect to the rear wheel.[9]

  1. ^ a b J. D. G. Kooijman; J. P. Meijaard; J. M. Papadopoulos; A. Ruina & A. L. Schwab (April 15, 2011). "A bicycle can be self-stable without gyroscopic or caster effects" (PDF). Science. 332 (6027): 339–342. Bibcode:2011Sci...332..339K. doi:10.1126/science.1201959. PMID 21493856. S2CID 12296078.
  2. ^ J. P. Meijaard; J. M. Papadopoulos; A. Ruina & A. L. Schwab (2007). "Linearized dynamics equations for the balance and steer of a bicycle: a benchmark and review". Proceedings of the Royal Society A. 463 (2084): 1955–1982. Bibcode:2007RSPSA.463.1955M. doi:10.1098/rspa.2007.1857. S2CID 18309860.
  3. ^ Limebeer, D. J. N.; R. S. Sharp (2006). "Single-Track Vehicle Modeling and Control: Bicycles, Motorcycles, and Models" (PDF). IEEE Control Systems Magazine. 26 (October): 34–61. doi:10.1109/MCS.2006.1700044. hdl:10044/1/1112. S2CID 11394895.
  4. ^ Pacejka, Hans B. (2006). Tire and Vehicle Dynamics (2nd ed.). Society of Automotive Engineers. pp. 517–585. ISBN 978-0-7680-1702-1. The single track vehicle is more difficult to study than the double track automobile and poses a challenge to the vehicle dynamicist.
  5. ^ Klein, Richard E.; et al. "Bicycle Science". Archived from the original on 2008-02-13. Retrieved 2008-09-09.
  6. ^ Jones, David E. H. (1970). "The stability of the bicycle" (PDF). Physics Today. 23 (4): 34–40. Bibcode:1970PhT....23d..34J. doi:10.1063/1.3022064. Retrieved 2008-09-09.
  7. ^ Sharp, Robin S. (November 2008). "On the Stability and Control of the Bicycle". Applied Mechanics Reviews. 61 (6): 060803–01–060803–24. Bibcode:2008ApMRv..61a0803H. doi:10.1115/1.2820798. ISSN 0003-6900.
  8. ^ Sharp, R. S. (July 2007). "Motorcycle Steering Control by Road Preview". Journal of Dynamic Systems, Measurement, and Control. 129 (July 2007): 373–381. doi:10.1115/1.2745842. S2CID 53678980.
  9. ^ Cossalter, Vittore (2006). Motorcycle Dynamics (Second ed.). Lulu.com. pp. 241–342. ISBN 978-1-4303-0861-4.[self-published source]

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search