Auger effect

Two views of the Auger process. (a) illustrates sequentially the steps involved in Auger deexcitation. An incident electron (or photon) creates a core hole in the 1s level. An electron from the 2s level fills in the 1s hole and the transition energy is imparted to a 2p electron which is emitted. The final atomic state thus has two holes, one in the 2s orbital and the other in the 2p orbital. (b) illustrates the same process using X-ray notation, KL1L2,3.

The Auger effect (/ˈʒ/; French pronunciation: [ˈ/o.ʒe/]) or Auger−Meitner effect is a physical phenomenon in which the filling of an inner-shell vacancy of an atom is accompanied by the emission of an electron from the same atom.[1] When a core electron is removed, leaving a vacancy, an electron from a higher energy level may fall into the vacancy, resulting in a release of energy. For light atoms (Z<12), this energy is most often transferred to a valence electron which is subsequently ejected from the atom.[2] This second ejected electron is called an Auger electron.[3] For heavier atomic nuclei, the release of the energy in the form of an emitted photon becomes gradually more probable.

  1. ^ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "Auger effect". doi:10.1351/goldbook.A00520
  2. ^ Berkowitz. Photoabsorption, Photoionization, and Photoelectron Spectroscopy. Academic Press. p. 156. doi:10.1016/B978-0-12-091650-4.50011-6. ISBN 978-0-12-091650-4.
  3. ^ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "Auger electron". doi:10.1351/goldbook.A00521

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search